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Summary

In case of less stable ships or unstable ships su
a small rudder angle, say 5 degrees.
such ships, the authors proposed a modified zig-
which was distinguished from ordinary zigzag maneuver in the respect that
the rudder angle was not equal to the switching heading angle.
ordinary and modified zigzag tests on two full supertankers are reported and
K*, obtained from them are compared with each other. In the latter
half of this paper, it is described that modified zigzag maneuver is

in conducting ordinary zigzag maneuver at
to examine the course keeping qualities of
zag maneuver,

ability indices, T* and

response function of maneuverability.

Intreduction

In case ships with stable couse keeping
quality, the zigzag maneuver proposed by
Kempf" can be executed with ease even at
small rudder angle. It has been a useful
method to searth the maneuverability of ships
by making use of the first order system
analysis®®». However, this method is not
suitable for determining the maneuverability
of less stable or unstable ships, because the
trajectory of such ships becomes remarkable
asymmetric or diverges in spite of the com-
pensatory steering so that the zigzag manever
is unable to be continued. For the sake of
removing the difficulty, the authors have
proposed to execute a different type of zig-
zag maneuver (hereafter it will be called as
the modified zigzag maneuver) which is dis-
tinguished from the normal zigzag maneuver
in the repect that the rudder angle ¢* is not
always equal to the switching course angle
¢* at which the rudder is reversed®.

In this paper, the authors shall again in-
troduce the tenor of the article 4) with some
examples together, and moreover describe
the application of the modified zigzag ma-
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ch as full bodied ship, there are difficulties
In order

As an example, results of
the maneuver-

valid to obtain frequency

neuver to determination of the frequency
response function of steering.

1. Modified Zigzag Maneuver

1.1 Difficulties in executing the normal
zigzag maneuver in case of less stable
or unstable ships

As stated in the introduction, there are
some difficulties in executing the normal
zigzag maneuver at a small rudder angle,
to say 5 degrees, in case of less stable or
unstable ships such as full super tankers,
because the trajectory of ship in process of
the zigzag maneuver diverges to infinity or
if it were not so, the difference of the course
angle from the original course grows so large
that the zigzag maneuver is unable to be
continued. Fig. 1 shows the qualitative re-
Jationship between the rudder angle o*
used at the zigzag maneuver and the am-
plitude ¢ of course angle as well as the
period 7’ (=distance run/ship’s length) of
limit cycle in both cases of stable and un-
stable ships. Asshown in fig. 1, it is impos-
sible at all to execute the normal zigzag
maneuver at small rudder angle in case of
unstable ships, and even in case of less
stable ships it is almost impossible from the
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Fig. 1 Amplitude of head angle ¢ and period
/ (=7U/L)

practical point of view.

1.2 Proposition of modified zigzag
maneuver

In spite of the difficulties in executing the
normal zigzag maneuver, even less stable or
unstalbe ships can be steered on a straight
course without difficulty. The reason will
be that at the course keeping maneuver the
rudder is reversed to the compensatory direc-
tion before the deviation of course angle
grows larger than 1 degree even in case of
manual steering; much less the deviation is
in case of automatic steering. Therefore,
the angular velocity as well as the drifting
velocity do not develope to create unstable
hydrodynamic moment. Hence, the ships
can quickly response to even small rudder
angle. As an example, the results of zigzag
maneuver tests on the prescribed unstable
ship whose equation of motion is reprsented
by a second order nonlinear equation (11), are
shown fig. 2 (a)-(f) at which the rudder angle
is kept 5 degrees while the switching course
angle is varied from 5° to 0.2°. In this ex-
ample, the change of course angle grows
gradually larger with the lapse of time in
case of 1 degree switching course angle,
while it reaches to a steady state, that is
limit cycle, in case of that less than 0.8°.
The ship motion at the modified zigzag
maneuver with small switching course angle
seems to be more similar to the actual ship
motion at the course keeping maneuver than
the normal zigzag maneuver. Therefore,
the authors have proposed that it is more
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Simulation of zigzag maneuver in case
of using non-linear equation (11) (7Y
=-—17.75, T2'=0.485, T3'=0.895, K’
—9.15, p'=-8.6)

suitable to execute the modified zigzag
maneuver in order to examine the course
keeping qualities of ships.

In the following paragraphs, we shall com-
pare the course keeping qualities obtained
by the first order system analysis of the
normal and the modified zigzag maneuvers
with each other.

1.3 The aim of the first order system
analysis
Comparing with the results obtained from
the first order system analysis of 15°-15°
normal, 5°-5° normal and 5°-1° modified
zigzag maneuvers (the former of the num-
bers connected by the symbol—means the
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amount of the rudder angle used at zigzag
maneuvers and the latter does the switching
course angle), we can draw the inference
that K, T indices from 5°-5° normal zigzag
maneuver are remarkable larger than those
from 15°-15° normal one, while K, T indices
from 5°-1° modified zigzag maneuver are
smaller than those from 15°-15° normal and
5°-5° normal zigzag maneuvers. This seems
to coincide exactly with the fact that the
responses of less stable or unstable ships to
such modified zigzag maneuver as 5°-1°
modified one, is virtually similar to those of
stable ships, and therefore even unstable
ships such as full super tankers are able to
be steered without so much difficulties.

Then, we shall examine the aim of the
first order system analysis in order to decide
which K, T indices are well representative
of the course keeping quality. For the sake
of brevity, we assume that the equation of
motion may be described by the second
order linear equation as follows.

3

d¢ d? d¢
T1T2'EF+(T1+ T ’d_tz"-*"—c‘it'

da

=Ko+ KT at

where the symbols used here follow the

article 2). The first order approximation of
this equation proposed by Nomoto® is

(1)

d¢ | dp _
Tan ¥ =10
T=T1+T:— T3 (2)

The solution ¢(¢) of eq. (2) will agree exactly
with that of eq. (1) after the lapse of in-
finitely long time, while at the initial stage

Fig. 3 Comparison between the response of first
order system to stepwise steering and

that of second order system

the former solution is smaller than the latter
one as shown by the dotted line in fig. 3.
The less stable a ship is, the larger the
difference between the solutions of egs. (1)
and (2) is.

Now we assume that there exist two ships,
of which the course keeping qualities are
represented by egs. (1) and (2) respectively.
Comparing with the records of course angle
and rudder angle at the zigzag maneuver,
such differences as shown in fig. 4 by the
solid and dotted lines may be found between

Yy gD
s 7 —~//eg.(2)

Fig. 4 Comparison between zigzag maneuver of
first order system and that of second
order system

these two ships. Namely, in case of ships
whose equation of motion is described by eq.
(1), the timing of reversing the rudder angle
advances and the overshooting course angle
decreases compared with those of ships of
eq. (2). Therefore, the K and T indices of
ships described by eq. (1) are smaller than
those of ship by eq. (2), and hence the former
ships seem to be of more stable course keep-
ing quality than the latter ship.

This tendency will be much exaggirated
as the switching course angle decreases. In
order to distinguish the K, T indices obtained
from the first order system analysis of the
zigzag maneuver of ships described by eq.
(1) from those of eq. (2), let’s use the symbols
K* and T*. These K* and T* values of
stable ship obtained from the analogue
simulation of various kinds of modified zig-
zag maneuvers are shown in figs. 5 and 6.
The prescribed values of T/, T/, Ty’ and K’
used at these simulation are 12.68, 0.420, 0.893
and 5.82 respectively. The K and T indices of
the eq. (2) correspond exactly to the K* and
T* indices obtained from the modified zigzag
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maneuvers of infinitesimal rudder angle. The
larger the rudder angle of the zigzag
maneuver is, the smaller the K* and T*
values are. This tendency is remarkable in
case of small ¢*/6* ratio.

The K* and T* indices obtained from the
various kinds of zigzag maneuvers are in-
dependent of the amount of rudder angle 6*
and are constant, only if the ratio ¢*/é* re-
mains unchanged. But the K* and T* values
do not coincide with the K and T values of
eq. (2). This difference between the K*, T*
values and the K, T values increases as the
course keeping quality becomes worse. The
K, T values of unstable ships are always
negative, but there may exist the positive K*
and T* values in case of certain small ¢*/5*
ratio. Therefore such modified zigzag ma-
neuvers are able to be executed even in case
of unstable ships.

1.4 What is the purpose of the zigzag
maneuver ?

As stated above, the K* and T* values
determined from the modified or normal
zigzag maneuvers are usually different from
the K and T indices of the first order sys-
tem analysis. Then, which indices are best
representative of the maneuvering charac-
teristics of ships?

Principal modes of steering motion of ships
will be classified in the following items, which
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— &% (deg)

Fig. 5 T*of a stable ship obtained from various
kind of modified zigzag maneuvers
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Fig. 6 K* of astable ship obtained from various
kind of modified zigzag maneuvers

are shown in figs. 5 and 6 qualitatively.

a) course keeping maneuver

b) course change maneuver

C) emergency maneuver
Among these items, the b) and c¢) are well
covered by normal zigzag maneuvers of §*
=15° and 35° respectively, because in these
modes of steering motion the rudder angles
of 15° or 35° are frequently used and kept
unchanged until the changes of course angle
grow to the similar extent as the amounts
of the used rudder angle.

Accordingly, the K* and T* values thus
obtained from such normal zigzag maneuvers,
to say 15°-15° and 35°-35° normal ones, will
be well representative of the maneuvering
characteristics of the items b) and c). On
the other hand, in the mode a) the helms-
man endeavors to keep the change of course
angle within less than 1 degree by steering
the rudder of more or less than 5 degrees.
Therefore, the modified zigzag maneuvers
of small ¢*/6* ratios, for instance 5°-1°
modified one, are more adequate and more
practical than the normal zigzag maneuver
to examine the course keeping quality of
ships. The K* and T* values obtained from
these modified zigzag maneuvers, as stated
already, are smaller than those from the
normal zigzag maneuvers. In other words,
the former K* and T* values suggest more
stable course keeping quality than the latter
ones do.
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Fig. 7 Amplitude of head angle ¢ and period ¢/ (=tU/L) of limit cycles at the various
kind of modified zigzag maneuvers carried out with an unstable ship (7Y
=—17.75, Ty’=0.485, T3’ =0.895, K'=—9.15, p’'=—8.6)

1.5 Conditions for the existance of stable

limit cycles.

Even in case of unstable ships, whose nor-
mal zigzag maneuvers cah not be executed
because of divergence of their course angle,
if we choose an adequate small switching
course angle ¢* compared with rudder angle
o*, the modified zigzag maneuver will be
able to be executed, so that on the phase
portrait the trajectory of steering motion
will reach a certain stable limit cycle at last.
In figs. 7 (a) and (b), as an example, the
amplitudes of course angle ¢ and dimension-
less periods 7’ of such stable limit cycles are
shown with respect to some combinations of
rudder angle §* against the switching course
angle ¢* in case of an unstable ship whose
equation of motion is nonlinear. Hereafter
for the present, we shall concentrate our
attention to only such cases as the equation
of motion is linear. From the studies stated
above, it may be deduced that the zigzag
maneuvers with large rudder angle é* in
comparison with the switching course angle
¢* are able to be executed, while in the re-
verse case, to say small §* compared with
¢*, they are unrealizable. Therefore, it will
be suspected that there exists a certain

critical value of ¢*/6* beyond which
the zigzag maneuver of unstable ships
can not reach the stable limit cycle. The

amount of such critical value of the ¢*/¢*

ratio will be considered as one kind of
criterion for judging the course keeping
quality. Then in this paragraph, we shall
investigate the conditions under which the
stable limit cycle is able to be reached by
interminable execution of zigzag maneuver.
In fig. 8 is shown the block diagram of
modified zigzag maneuver, where the symbols

S0
e
¥+ _el) ||| e s KU1+ 738) Y(t)
I S [\ R P SO+7S1+5,8)
: oM
- ship
74g239 maneuver

Fig. 8 Block diagram of zigzag maneuver

¢* and §* are representative of the switch-
ing course angle and rudder angle respec-
tively. Besides, ¢:(?), ¢u(f), e(t) and 4(¢) mean
some time-dependent function, to say the
desired course angle, actual course angle,
error of course angle and rudder angle re-
spectively. However, the desired course
angle ¢:(f) may be made null without lost
of generality.

In case of stable ships, the rudder angle
6(t) and course angle ¢o(f) (hereafter will be
written as ¢(¢) for the aim of brevity) will
reach the steady oscillatory state, to say
limit cycle, after interminable execution of
zigzag steering. The existance of such limit
cycles can be assured by the following re-
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asoning. The frequency characteristics of
the rudder angle 4(¢) which varies rectangu-
larly against the time, can be well described
by the so-called describing function K as
follows: %

46*

45* .40™ .
3 COoS ¢n—y " Sin ¢

Keq=g($)+jb(§)=
dr=sin"¢*[¢)

Assuming that the error signal e(¢) is sinu-
soidal function of time, this equation implies
that the amplitude of rudder angle 4(¢) is
|Ke| times of that of error signal e(f) and
the phase angle of 6(¢) is ahead of e(f) by
ZKe. Besides, the fact that the describing
function is independent of frequency » but
only dependent of the amplitude ¢ of input
signal must be kept in mind.

The function G(jw) shown in fig. 8 is the
frequency transfer function of ship with rud-
der angle regarded as the input and course
angle as the output. Taking account of the
fact that the input and the output of the

(3)

&)

0] |et)

e(t)=—#%t) &)

G(S)
_ KU+TS) [ ]
SU+TSNT+RS)

Fig. 9 Block diagram of limit cycle
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hysteresis block representing the zigzag
steering are —¢o(f) and &(f) respectively, it
is able to be easily deduced from fig. 9 that
the relation of eq. (4) is a sufficient condi-
tion for steady oscillatory state.

G(jw)- Keg=—1 (4)
Transforming this equation,
. 1
Rg(G(]a)))=Re<—K >
eq
(5)

nGljo)=In( 5~

In other words, a cross point of the G(jw)
curve and —1/K, curve on the Nyquist dia-
gram corresponds to a steady oscillatory
state, to say steady limit cycle.

By the way,

1\  np
R”(\_ Ko )‘” 46*

1 mp*

I””(‘ Ko )“ T 46*
Accordingly, the —1/K,, curve is a half line
parallel to the real axis of the Nyquist dia-
gram. The distance from the half line to
the real axis is uniquely determined by the
combination of switching course angle ¢*
and rudder angle §*, to say —=¢*/(46*). On
the other hand, the behaviors of the fre-
quency transfer function G(jw)=K(1+ Tsjw)/
(Jo-(14 Tjw)-(1+ Trjw)) on Nyquist diagram
are different according to the course keep-
ing qualities of ships. In fig. 10, are quan-

COS ¢1

(6)
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b e e e e
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c¢) T* and K* of an unstable ship

Fig. 10 Exsistance of limit cycle of zigzag maneuver
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titatively shown the behaviors of G(jw) in
two cases of stable and unstable ships.

(1) In case of stable ship. The G(jw)
curve always stays in the third quadrant of
the coordinate plane without regard to varia-
tion of frequency w. Namely, for infinite-
simally small o the absolute value of G(w)
is infinitely large and vice versa. There-
fore, the G(jw) curve always intersects the
half line representing —1/K. at only one
point as shown in fig. 10 a). Hence, the
trajectory on the phase plane approaches
gradually to the stable limit cycle corre-
sponding to the cross point. As the fre-
quency o and the ratio ¢/o* correspond to
each point of the G(jw) curve and the —1/Keq

half line respectively, the amplitude ¢ of.

course angle and the period r of the limit
cycle are automatically determined from the
parameters, o and ¢/6*, of these two curves at
the cross point. Accordingly if the ratios of
¢* to 6%, to say ¢*/6*, are equal to each other
even for the different kinds of zigzag
maneuver, for instance 20°~20°, 10°~10°
and 5°~5° zigzag maneuvers, their limit
cycles have the same frequency w. In this
case, the amplitude ¢ is strictly proportional
to the switching course angle ¢*.

(2) In case of unstable ship. The Gjw)
curve shifts from the third quadrant into
the second quadrant as the frequency e
decreases less than a certain critical value,
while the —1/K. half line stays still in the
third quadrant even in this case. There-
fore, these two curves do not always inter-
se-t each other. There is no cross point in
case where the switching course angle ¢*
is larger in comparison with the rudder
angle 6*. However, if the switching course
angle ¢* is diminished while the rudder
angle 6* is kept unchanged, the G(jw) curve
may intersect the —1/K., half line as shown
in fig. 10 (b). In this case, there usually
exist two cross points. This implies that
two steady oscillatory states may exist at
the same time. After the inspection of
stability of these two steady states, however,
it is deduced that the steady state marked

by II in the figure is unstable so that it can
not be realized physically. From the reason-
ing stated above, it may be presumed that
even if (10°, 10°) and (20°, 20°) normal zig-
zag maneuvers, where the former numbers
in the parentheses mean the switching course
angle ¢* and the latter ones do the rudder
angle ¢*, are unable to be executed in case
of unstable ships, such modified zigzag
maneuvers as (1°, 10°) or (2°, 20°) may be
executed.

Similarly as in the figs. 5 and 6 in case
of stable ships, in fig. 10 (c) are quantita-
tively shown the K* and T* values that will
be determined from the first order system
analysis of modified zigzag maneuvers in
case of unstable ships. The value of the
parameter ¢*/6* corresponding to the ab-
scissa of this figure is its critical value that
decides whether it is possible to execute the
modified zigzag maneuver.

1.6 A few examples of the modified zigzag
maneuver.

Let’s show the K* and T* values that
were recently obtained by making use of
two actual large ships. The principal dimen-
sions of these ships are shown in Table 1.

Table 1 Principal dimensions of ships and the
results of normal and modified zigzag

maneuvers

i (‘AY’ Ship ltB” Ship
Length between

perpendiculars, Lpp (m) 307.0 313.0
Moulded breadth, B (m) 48.2 48.2
Draft, d (m) 19.39 19.40
Displacement (ton) 250,750 250,251
Rudder area/Lyppxd 1/69 1/66.7
(10°, 10°) normal Teg'™* 4.56 11.0
zigzag maneuvers | K/* 2.38 5.23
(1°, 5°) modified Tes™ 1.13 3.62
zigzag maneuvers | Kgo/* 0.927 2.17

There are full super tankers whose 7' —d’
characteristics obtained by reverse spiral
tests have the hysteresis loops representing
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unstable course keeping qualities as shown
in figs. 11 and 12. In these figures, the time
histories of (10°, 10°) normal zigzag maneuver
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Fig. 11 Results of reverse spiral test and zigzag
maneuver of “A” ship
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Fig. 12 Results of reverse spiral test and zigzag
maneuver of ‘“B” ship

and (1°, 5°) modified zigzag maneuver, to say
t—¢, 8 curves, are also shown. The K* and
T* values obtained from the first order sys-
tem analysis of these time histories are
tabulated in table 1 for comparison of each
other. From the results, it may be deduced
that the K* and T* values from (10°, 10°)
normal zigzag maneuver are larger than
those from (1°, 5°) modified one, so that the
ships are of more stable course keeping
quality at the modified zigzag maneuver than
at the normal zigzag maneuver.

2. Application of Modified Zigzag Maneuver
to Examination of the Frequency Re-
spone Function

2.1 Determination of frequency response
function by Fourier
Analysis of limit cycles at the modi-
fied zigzag maneuver.

The direct method to obtain the frequency
response function is Fourier analysis of the
response to the sinusoidal steering of various
frequencies w. The modified zigzag maneuver
is also able to be used to obtain the fre-
quency response function, because the steady
oscillatory states with various frequencies
are able to be realized by interminable execu-
tion of modified zigzag maneuver® The
latter method is applicable even for unstable
ships, while the former method, to say the
sinusoidal steering is not applicable. This
is the main reason that the modified zigzag
maneuver have advantage over the sinusoidal
steering.

However, the time histories of the rudder
angle §(¢) and course angle ¢(f) are not al-
ways sinusoidal ones at the zigzag maneuvers.
Therefore, it is necessary to pick up the
harmonic component with the fundamental
frequency from these deformed signals of
the rudder angle and course angle in order
to obtain the frequedcy response function.
The rudder angle of rectangular shape may
be substituted by the equivalent sinusoidal
function (7), of which the amplitude is equal
to 46*/= and the period is the same a3 that
of the rectangular rudder signal,
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46* . . 06
3(t)= sin wt (7) caleulation — T
T 3
g 04
As the fundamental harmonic component of &
- 02

the course angle ¢(¢) is (40*/n)|G(jw)|sin (wt
+/G(jo)), on the other hand, the absolute
value |G(jw)| and the phase angle £G(jw) of
the frequency response function G(jw) are
able to be determined from the amplitude
and the phase angle of ¢(f) at the steady
oscillatory state. Hence, the frequency
response function H(jw) = K(1 + Tyje)/((1
+ Tijw)(1+ Thjw)) is calculated by using the
following relationship.

| H(jw)| =0|G(jo)l, LH(jo)=,G(jw)+=/2 (8)

In order to examine the validity of the above
stated method, the frequency response func-
tion determined from the analysis of the
various kinds of the modified zigzag maneuver
which were executed on the analogue simu-
lator will be compared with that from
theoretical calculation by the relationship
H(jw)=K(1+ Tyjo)/(1+ Tijo)(1+ Trw)).

(1) Stableship. The stability indices TV,
Ty, Ty and K’ used for the analogue simula-
tion are shown in table 2, which were
measured by means of forced yawing tech-
nique with a full super tanker?.

Table 2 Hydrodynamic coefficients and stability
indices of the ships used in the analysis
of frequency response characteristics

stable ship unstable ship

m’+my’ 26.2 x1073 26.2 x1073

Yy! 20.0 ” 20.0 ”

N’ 0.09 ” 0.09 "

Ng' 5.03 7 5.03

Y —10.78 »# —10.78 »

Y — 0.437 # — 0.437 «

Ny — 3.15  » — 230 #
L+ ] 1.79  » 1.79  #

iy 12.68 —11.78

T 0.420 0.484

T 0.893 0.895

K’ 5.82 — 6.20

Fig. 13 Frequency response function of a stable
ship obtained from various kind of
modified zigzag maneuvers

Fig. 13 shows the frequency response func-
tions thus obtained from the various modified
zigzag maneuvers and the theoretical cal-
culations. The abscissa of this figure is the
common logarithm of dimensionless fre-
quency o'(=eL/U), to say loge’, and the
ordinate is common logarithm of the absolute
value of the frequency response function
H(jw), to say log|H(jw)|, or the phase angle
< H(jw). The dotted line connecting the cir-
cled points is the frequency response func-
tion obtained from the modified zigzag
maneuvers, while the solid line is that from
the calculations. These two lines agree with
each other very well. This fact means that
the modified zigzag maneuver is useful for
obtaining the frequency response function.
Inspecting these two lines in detail, however,
it is found that the gain characteristics
|H(jw)| from the modified zigzag maneuver
is slightly less than its true value. Even
these differences between the measured
values and the true values are negligibly
small compared with the experimental errors
of the zigzag maneuver at the sea.

(2) Unstable ship. As stated already in
1.5, the frequency response function can
not be determined for the frequencies less
than a certain critical frequency, at which
the function G(jw) posses its least imaginary
value. However, the artificial deformation
of the response function G(jo) makes the
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modified zigzag maneuver possible to be
executed, so that the frequency response
function can be obtained even for the fre-
quency less than the critical one. For the
artificial deformation of the frequency re-
sponse function, we shall make use of the
circuit which makes the phase angle of its
input signal advance. It is most desirable
to choose the circuit whose gain charac-
teristics decreases proportionally to the fre-
quency o, while the phase angle increases
as the frequency o decreases. As a matter
of fact, however, the circuit as shown in
fig. 15 will be used in the following study.

Im
original
Gjw)
0 Re
! zy*
-VKeq Tas*
|
1 / D
oV
ﬂ\od‘&.\e

Fig. 14 Modification of frequency
response function

)
O—E:A:ww_
Ry
input R output
o— —o0

Fig. 15 Phase-shifting circuit

This circuit posses the maximum phase ad-
vance equal to tan~'((1—7)/(2./7)) at the fre-
quency wo=1/Tps/7). The response func-
tion of this circuit is calculated by eq. (9).®

. 14+ Tps
1+7‘TDS
= Ri+ R, (O<T<1>J

Tp=Ry-C;

Go(s)=7r

By inserting this circuit after the block G(s)
as shown in fig. 16, that is to say the de-

S(t)
Ylt) + e(t) [ Stt) KA+R&) |, 1478 | Y10
| e(t) SU+RSNI+T,S) 1+77S:
l
zigzag stecring ship phase-shifter

Fig. 16 Block diagram of zigzag maneuver in
case of adopting phase-shifting circuit

formed course angle ¢'(¢) is fed back to the
hysteresis block instead of the course angle
¢(t), the frequency response function can be
deformed as shown in fig. 14.

The resistances Ri, R: and the capacitance
C: must be predetermined by adequately
presuming the frequency w, and the maxi-
mum phase advance. In fig. 17 is shown
the analogue simulator with the phase shift-
ing circuit, where the part enclosed by a
dotted line is the phase shifting circuit. The
frequency response function Gs(jw) which is

Y Y phase-shifting circuit

[3i,]m O MU
Y 3

. “o——o ~ MU
potentiometer

integrator adder

Fig. 17 Analogue simulator of zigzag meneuver in case of adopting
phase-shifting circuit
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Fig. 18 Frequency response function of phase-
shifting circuit

shown in fig. 18 was determined previously
by the analysis of the responses to the
various sinusoidal inputs.

The modified zigzag maneuver at which
the artificial course angle ¢’(¢) is fed back
instead of the real course angle ¢(f), is
turned to be realizable even for small fre-
quency. Namely in case of the modified zig-
zag maneuver at which the real course angle
¢(t) is fed back as hown in fig. 8, even the
(1°, 5°) modified zigzag maneuver is unable
to be executed, while the new modified zig-
zag maneuver at which the artificial course
angle ¢’(¢) is fed back as shown in fig. 16,
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is able to be executed even for the remark-
able small frequency. For instance, it is
possible to execute even (5°, 5°), (10, 5°) and
(20°, 5°) modified zigzag maneuvers where
the former numbers in the parentheses mean
the switching course angles in terms of the
artificial course angle ¢’({) and the latter
ones do the rudder angles.

From the frequency response function
G'(jw) determined by using the artificial
course angle, the frequency response func-
tion H(jw) which we want to know is cal-
culated with ease by eq. (10)

log| H(jw)| =log w+10g|G'(jo)| —1og|Go(jw)|
ZH(jw)=-G"(jo)— £ Go(jw)+ /2
(10)
In order to examine the validity of the
new modified zigzag maneuver, the stable
ship quoted already in this paragraph will
be turned to be unstable by changing only
the yaw damping moment coefficient N,’ from
—3.15x107% to —2.30x10"%. The TV, T¥’, T3’
and K’ indices of this artificial unstable ship
are shown in table 2 as well as the hydro-
dynamic coefficients. The circled points and

the points enclosed by triangles in fig. 19
represent the frequency respense functions

o
'

e
N

Log[H (jw)l

log w’

N0t
LHGw)

P

(V) 1.0

with phase-shifting
circurt

without phase-shifting
circuit

~catculation

caiculation

Fig. 19 Frequency response function of an unstable ship obtained
from various kind of modified zigzag maneuvers
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obtained by the new modified zigzag maneu-
vers and the original modified ones respec-
tively. These points agree well with the
true response function shown by the solid
lines in the figure.

At the region hatched by oblique lines
where the logarithmic frequency, to say
log w, is less than —0.125, the original modi-
fied zigzag maneuvers is not realizable. As
stated already, however, it is possible to
execute the new modified zigzag maneuver
even at the frequency within the region, so
that the frequency response function is able
to be obtained at the frequency whose loga-
rithm is less than —0.125. The circled points
in this fiure were obtained by using the
artificial course angle ¢'(¢), to say the new
modified zigzag maneuver and points en-
closed by triangles were obtained by the
original modified zigzag maneuvers. They
agree well with each other as shown de-
finitely in the Figure. However inspecting
the points in detail, it will be found that
the gain characteristics of the response func-
tion from the modified zigzag maneuvers are
slightly smaller than the true values, and
that the measured phase angles lag behined
the true ones. Nevertheless, this method to
obtain the frequency response function seems
to be very useful because the differences
between the measured values and the true
ones are negligibly small.

2.2 Investigation of existance of limlt
cycles in case of taking account of the
nonlinearity of motion.

To estimate the steering motion of un-
stable ships correctly, it is necessary to take
account of the nonlinearity of motion. Then
in this paragraph, the conditions under which
the existance of the limit cycle at the zigzag
maneuver is assured, will be investigated.

Before begining the investigation of ex-

istance of limit cycle, it must be discussed
in detail which nonlinear equation of motion
is best representative of the steering motion’
of unstable ships. However in this study,
the following nonlinear equation with- the
so-called cubic type nonlinearity which has
been proposed by Nomoto® and Norrbin!®,
will be used for the sake of brevity

T\ 4+(Th+ oy +r+pr’ =Ko+ KTsé  (11)

The rudder angle §(f) at the steady oscil-
latory state, that is to say the limit cycle,
can be described by the error signal
e(t)(=—¢(t)) of course angle as follows;

ot)=ae(t)+ Beé(t) = — agp(t) ~ B(t)

a= ifZ cos¢y, PB=-— 4?

rPw

Substituting eq. (12) into eq. (11),
T ng.l'l.-%-(Tx—}— T:+ KT3p)g
+(+ K Tsa+ KB)g+ pd*+ Kagp=0 (13)

The sinusoidal solution of this autonomous
equation, to say ¢ sinef, gives the amplitude
¢ and frequency o of the limit cycle at the
zigzag maneuver. Substituting ¢ sin of into
eq. (12) and equating the coefficients of the
fundamental harmonic functions, sin wf and
Ccos w!, to zeros,

sin¢r,

l (12)

<—2—pg7;2— T1 T2>w2+1+KT3a +Kp=0 (14)

—(Th+ T2+ KT38)w*+ Ka=0

The graphical solution that will be stated
below seems to be useful for solving these
equations, because this method is appropriate
to reveal the close relation between the
amplitude ¢ and the frequency w of the limit
cycles, and the switching course angle o*
and the rudder angle ¢* of the zigzag steer-
ing. Rearranging eq. (14),

—K(1+ Tszwz)[Tl-i- T:—Ts+ (Tl T Ta-—%stgp)wQ]

a2+l32w2 -

1+ Tiie?)(1+ TYe?)(1+ Tie?) + F(g, o)
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Bo__ _

—K(1+ T30 [1 + (Tl T3+ T T:— T T —%—%p(;z)a)z]

a2+‘82w2 -

o[(1+ Ti?0?)(1+ Thle®)(1+ Ts'e?)+ F(¢, w)]

(15)

F(g, 0)= <—1%p2 Ts*¢t —%p hT, TsngZ)a)e 4+ <%p( T:'—Th T2)<Z2+’126‘p2g7)‘>w‘ +’g'1>(,z2w2

The left hand side term of the first equa-
tion of eq. (15) is —=¢ cos ¢1/(46%), and that
of the second equation is equal to —=¢*/(46*)
respectively. Each of them is independent
of the frequency . The right hand side
term of the second equation is graphically
represented by a curve as shown in fig. 20
if the parameter ¢ is presumed previously.
On the other hand, as the left hand side
term of the second equation is constant in-
dependently of the frequency, it is repre-
sented by a half line parallel to the abscissa.
The distance from the half line to the ab-
scissa is uniquely determined by the equa-
tion —z¢*/(46*). This half line always inter-

— £
o« ’(ﬁ")’

<l

sects the curves representing the right hand
side term. A pair of ¢ and w corresponding
to each of these cross points satisfy the
second equation of eq. (15). One solid line
as shown in fig. 21 is obtained for one pre-
scribed value of ¢*/6* by plotting a lot of
the pairs, (¢, w) satisfying the second equa-
tion. Similarly, the left hand side term and
the right hand side term of the first equa-
tion are represented by a half line parallel
to the abscissa and certain curve respectively
provided that the amplitude ¢ is previously
determined (see fig. 22). The cross point at
which the half line intersects the curve re-
presenting the right hand side term deter-
mines a solution satisfying the first equation
of eq. (15). The dotted line in fig. 21 is ob-
tained by potting a lot of the pairs, (¢, @)
corresponding to the cross points of fig. 22.
It is obvious from the reasoning stated above
that the cross point of the solid line and
the dotted line in fig. 21 is representative of
a limit cycle at the zigzag maneuver with
the prescribed value of ¢*/6*. The ordinate
and abscissa of the cross point are the am-

-
Q%+ (poy

_ x¥igd

49

Fig. 22
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plitude ¢ of course angle and the frequency
o of the limit cycle respectively.

As an example of the graphical solution,
the modified zigzag maneuvers of the un-
stable ship will be studied by assuming the
so-called cubic type nonlinearity, the co-
efficient p’ of which is equal to —20.0. Fig.
23 shows the #'~§’ characteristics of the
unstable ship. Some pairs of the amplitude
¢ and the frequency w, to say (&, ), of the
limit cycles are shown in fig. 24 for the

06
041
0.2
-0  -20 0 20 40 o "
(deg) "~
-0.2 A
04
-0.6

Fig. 23 #'~4’ characteristics of an unstable
ship used at the nonlinear analysis of
modified zigzag maneuver (77 = —11.78,
Ty'=0.484, T3'=0.895, K'=—6.20, p’
=-20.0)

04

0.2

>

various kinds of ¢* and 6%, where the circled
points are the graphical solutions. The
dotted and solid lines are, as stated above,
representative of the first and the second
equations of eq. (15) respectively. The points
enclosed by triangles, on the other hand,
mean the limit cycles obtained by the
analogue simulation of the modified zigzag
maneuver.

The graphical solutions do not well agree
with the results from the analogue simula-
tion. However, it is evident from this figure
that both of the circled points and the trian-
gular points locate on the same dotted line
representing the first equation. Consequently,
if the solid line which is representative of
the second equation were brought down up
to the broken line, the graphical solution
should agree with the results of the analogue
simulation. In spite of the inaccuracy, the
graphical solutions seem to useful for study-
ing the limit cycle quantitatively. By the
way, comparing the results obtained by tak-
ing account of the nonlinearity of steering
motion with those from the linear analysis,
the following facts may be deduced;

(1) In the case where the equation of
motion is linear, the frequency of the limit
cycle is uniquely determined by the ratio
¢*/5*, independently of the values of ¢* and

"t dimensionless ¥
" dimensionless W

obtained from caicuiation

obtained from anaiogue
simulation

Fig. 24

Amplitude of head angle ¢ and frequency '’ of limit cycles at

the various kind of modified zigzag maneuvers carried out with
an unstable ship in consideration of nonlinearity
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o

&* and moreover the amplitude ¢ is strictly
proportional to the switching angle ¢*. How-
ever, this statement is not true in case of
the nonlinear equation of motion. The fre-
quency of the limit cycle increases as the
values of ¢* and ¢* increase, though the
ratio ¢*/6* is kept unchanged. The ampli-
tude ¢ possesses its minimum value at
certain pair of ¢* and é* as shown in fig.
24.

(2) In case of nonlinear equation of
motion, there exist more than one stable
limit cycles at certain kinds of ¢* and ¢%,
to say ¢*/6* equal to 0.16. The (0.8°, 5°)
modified zigzag maneuver, for instance, has
three limit cycles while the (1.6°, 10°) modified
zigzag maneuver has only one limit cycle.
However, all of these three limit cycles are
not stable. The limit cycle whose (¢', @)
value is (0.23, 0.52) is unstable and unreali-
zable, while the remaining two limit cycles
whose (¢’, ') values are (0.073, 1.002) and
(0.78, 0.28) respectively, are stable and re-
alizable. The former limit cycle of these
two stable ones is usually realized if the zig-
zag maneuver is started from the straight
course.

Conclusion

Summing up the discussions stated above,
the following conclusions will be deduced;

(1) In case of less stable or unstable
ships, it is difficult or impossible to execute
the normal zigzag maneuver at small rudder
angle. However at the modified zigzag ma-
neuver where the switching course angle is
small than the rudder angle, even such less
stable or unstable ships can realize the stable
limit cycles. Therefore, the modified zigzag
maneuver is very useful for examining the
course keeping quality, whether a ship is
stable or not.

(2) It is not appropriate to describe all
kinds of the steering modes by only one
first order approximation. As proposed by
Nomoto and Karasuno!?, it is necessary to
describe the steering motion with the second
order differential equation taking account of

the nonlinearity. However if the principal
modes of the steering motion are classified
into a) course keeping maneuver, b) course
change maneuver and c) emergency maneu-
ver, and if they are separately treated, the
first order system approximation is still use-
ful because of simplicity. In this case, the
different K and 7T indices must be used pro-
perly according to the relevant steering
mode. Namely, for b) and c) modes, the K
and T indices obtained from (15°, 15°) and
(35°, 35°) normal zigzag maneuvers respec-
tively are appropriate, while for a) mode
those from (1°, 5°) modified zigzag maneuver
are suitable.

(3) Even in case of unstable ships, the
stable limit cycles are realized if the ratio
of the switching course angle ¢* to the rud-
der angle 6* is less than a certain value.
Nevertheless, there exists no stable limit
cycle with the frequency less than a certain
critical value. If the artificial course angle
whose phase angle leads in advance of the
real course angle is fed back instead of the
real course angle, it is possible to execute
the modified zigzag maneuver with the large
switching course angle, so that the stable
limit cycle is able to be realized even at the
frequency less than the above stated critical
value.

(4) By analysing the response to the zig-
zag steering after the limit cycle is reached,
the frequency response function of maneuver-
ing motion can be obtained with enough ac-
curacy. - This method is by far better than
the sinusoidal steering, because it is appli-
cable even for the unstable ships.
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