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ABSTRACT

This paper presents the results of both theore-
tical and experimental studies on the dynamic ten-
sions and motions of the multi-component mooring
lines such as chain with clump weights and/or spring
buoys. Especially, the author's attention is paid
to analysis of the dynamic behavior of a mooring
line under the excitation caused by the motion of
floating platform.

Appearance of new types of multi-component
mooring lines demands the development of numerical
methods which are able to be applied for the analysis
of dynamic behavior of various types of mooring
lines. In this paper a new method is proposed by
the authors, which is motivated by the lumped mass
method originally developed by Walton and Polachek
(1959). The present method, however, is somewhat
modified to be applied to the analysis of the multi-
component mooring system and extended to be able to
include the elastic deformation of the mooring line.

The time histories of dynamic tension predicted
by the present method are compared with the experi-
mentanl ones with excellent agreement.

INTRODUCTION

In recent years, ocean platforms have become
more and more complex and at the same time the
requirement of the mooring systems used for those
platforms becomes more severe. For use as these
mooring systems, the mooring lines with a combina-
tion of chains and wire ropes, and those connected
with buoys and/or clump weights have come to be used.

Since the dynamic behaviors of those mooring
lines are complicated and somewhat different from
those of conventional single lines, the dynamic
analysis of those lines become more important for
investigating the feasibility and safety of mooring
of the floating platforms.

For this study, a new method of the non-linear
dynamic analysis of multi-component mooring lines

is developed to obtain a better understanding of the
dynamic behavior of multi-component mooring lines.
In the present method, the continuous distribution
of the mooring line's mass replaced by a discrete
distribution of lumped masses at a finite number of
points on the line. This replacement amounts to
idealizing the system as a set of point masses and
non-mass linear springs. At the present analysis,
non-linearities of viscous damping acting on the
mooring line are considered.

The present method has a great potential of
application for engineers as it does not require
lengthy procedure of numerical calculation and it
can save a good deal of computing time. One average
run over 4 cycles of harmonic motion may (240 time
steps) require approximalety 10 seconds in the case
of the mooring line model of 9 segments by using
IBM 3033. For example;

GOVERNING EQUATIONS OF MOTION

First, a mooring line is represented by a set
of discrete masses interconnected by springs as
illustrated in Fig. 1. The external forces acting
on a mooring line are gravity, hydrodynamic forces
and line tension.

The governing equations of motion of j-th lumped
mass are as follows;

M + A

. §in2y. + A, 257 %
;5 nj sin®y; AtJ cos YJ] xJ

+ [Atj'A sin ;j cos ;j Py ooek (1)

njl 2 xj

. coe2y; : sin2§i]) 2
[M; + AnJ cos7y; + Agy sin YJ] z5
+ [Agj=Anjl-Xj sin ¥ cos ¥j = Fzj ... (2)

(3=2,3, » N)
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where

Mass of j-th lump, and its added
masses in normal and tangential
directions respectively.

My, Apj, Agj ¢

Accelerations of j-th lumped
mass in x and z directions
respectively.

Xj, Zj

The nodal components of the external forces Fyj
and sz in Eq. (1) and Eq. (2) can be written by

ij = Tj cos vj - Tj~l €os Yj-1 = fdxj

sz = Tj sin 2 e Tj_l sin Y41 = fdzj - 6j
where

Tj Tension in a segment between

j-th and (j+1)-th lumped masses

85 weight in water of lumped mass

It is assumed that the drag force action on the
mooring line is proportional to the square of fluid
velocity relative to mooring line.

faxj = - § Dc Cqqn sin ¥y upj|un
- C4p cos ;3I“tj|“tj]
+ & ArgCax|Xy-cq| (xy-cq)*
vows G2
£a2j = § Dek [Can cos ¥j|up;|un;
+ Cq¢ sin ;3I“tjlucj]
+'%'Arzcdz|éjlij %
..... (6)
(3=2; 3; wsN)
where
D¢ equivalent diameter of mooring line
T original length of line segment
p density of water
C4n» Cqp @ coefficients of drag forces normal

and tangential to the mooring line
respectively. :

In addition to the drag on the line itself,
there will also be hydrodynamic drag on any con-
centrated substances attached to the mooring line
such as spring buoy and clump weight.

Arx, Arz : projected area of the additional
concentrated substances such as
spring buoy in x and z directions
respectively.

Cdx, Cqz : drag coefficients of the additional

concentrated substances in x and z
directions respectively.

The velocity components upj and ugj normal and
tangential to the mooring line are given by

unj = - (Xj-cj) sin yj + z; cos vj

(8)

s

upy = (*j‘cj) cos vy + ij sin Y5

where c; is the current velocity in horizontal direc-
tion at j-th lumped mass.

The additional constraint equation of the moor-
ing line is

T
(XJ—Xj_l)z o (Zj—Zj_l)z = 7° (& DS o _A,].Tl)Z

..... 9)
(3=2, 3, ..., M)
where
A : cross-sectional area of line
E : modulus of elasticity
SOLUTION OF THE PROBLEM
The govening equations (1) and (2) can be
reduced to:
®j = (RyTy - PyTy-1 + Uy)/ae2 ..., (10)
Zj = (S4T4 - QTy-1 + V§)/8e2 ..., (11)
(3=2, 3 ...N)
where
I = My + Ay sin? ;3 + Ay cos? ?3
I; = [Atj - Apyl] sin ;3 cos ?5
I3 = Hj + Anj cos? ;3 + Atj sin? ;3
= At2([I,- Ni v To® Y
Rj At“[I3+cos Yj Ip*sin Yj]/A
By At2[13-cos ;3_1 - Ip*sin ;E-I]IA
Sy = At2[I;+sin ;j—lz-cos ;jllk
Qy = At2[I,)-sin ;5-1 - I,ecos ;3_1]/1
Uj = Atz[lz(fdzj + 6_‘]) - I3‘fdxj]/)\
Vj - AtZ[IZ’fdxj - Il(fdzj"'sj)]/k
A= Ip°I3 - I52 casnls (12)




On the other hand, the nodal accelerations and
velocities of the next time step (xg 5 zn ),
(xn+l

difference equations so called Houbolt Method.

st = Ly (2 of*l - 5 8B + 4 o771 - 6072)
...... a3

- A -8 e 4ot - 24]D
...... 14)

where a dot over s; denotes time differentiation and
sj in equations (13) and (14) represents Xy or zj.

Combining equationi (10), (11) and (13), the
nodal displacements x and z? of next time step
n+l are derived as follows:

& (R?+1,T3+1 , P?+1.T§j} + ug+1)/z v+ (25)

=32 0 n-1 , 1 n-2
zj 2 %5 2 zj + 3 2j

+ (el LRt + IR 08

To obtain the tensions of next time step T?+1,

se the Newton-Raphson Method. It is assumed that

Tj consists of two components as follows:

n+l

Tj n+l

0 N n+l
T + ATy

where Tj“+1 is the tentative value of the tension

and ATJ“+1 is the correction.

Now, we define the following equation which is
a function of line tension of next time step.
This equation is derived from Eq. (9).

¢?+1 = Z?(1+T§t% /E-A)2
PR AL, L DL . X
_ W?+l (T?t%- T?tiv T?+l) B s (18)
(3=2, 3 ...N)

Expanding ¢§+1 in a Taylor series about the
(T?+i Tn+i T +1} | thus we obtain

awn+l awn-('-l
¢n+1 _ mn+1 + i .ATn+l + n+1
J i aTn+1 j=-2 o j -1
j-2 j—l

?+1) can be expressed by the following finite-

n+l
i n+l
+ 1 AT + (Higher order terms)
aTn+ i
J
...... (19)
=0
~n+l
Provided that the tentative values Tj are
sufficiently close to the correct values T;+1, we
may neglect the higher order terms in Eq. (19),
and thereby obtain a system of N linear
equations for the differential correction AT§+1.
~n+ %
gt -
~n+l ~n+l
+ Gj 'ATj = -wj ........... (20)
G2, 370y NEL)
where
i - - et reea?
+
+ @S- ath2 e @ - ofth2 Ll (21)
awn+l
En+l ~n+1 G n+l -n+1)
] 57" nHl j L B j-1
j=-2
4+
+ 8 @™t -afh (22)
aan+l
o+l _ i - 1S n+l ~n+l n+l _ n+1
5 aTn+1 &y * Rj—1) (Rj -1)
j-1
n+l n+l ntl _ n+l
+ + 8 z
GH 0y i
+222Q1 + T /R0 /B8 L. (23)
a(On«O-l
&n+1 o = R n+l (% o+l _ n+1)
i n+l j 3 j -1
oT
]
=l n+l n+l
+ Sj (2j - zj-l) ...... (24)
(3=2, 3, ... N+l1)
and
g DL _ 9 x M g 0l 1 = n-2
3 27y ¥2 %y
~ntl 5 n+l s n+l o+l | = ntl
+ [R T -P T +U /2
Ry 1 ¥ et
........ (25)
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sotl _ 5 n n=k ;4. n=2 7) Calculate the nodal displacements of the next
I o B TR & nH_nH
time step (xj ) 25 ) by Eqs. (15) and (16).
antl 2 ntl  ~ ntl ~n+l | = ntl
+ [§,".1 - QT 4+ ¥, 2
[ ] | QJ J=1 J 1/ 8) The iterative procedure from step 4) to step 7)
is continued until the appropriate convergence
(=235 queR)i s (26) is attained.
<o+ + + + + ~n+
where R? l, Sg 1, ?? l, Q? 1, 5% l, o 1 axs the 9) Repeat the calculational procedure from step 2),
cenrarive valiias: of R?+ : SE+1' P§+l, Vn+l, U;+1 15 as time step changes from n to n+l.
equations (12).
EXPERIMENTS

COMPUTATIONAL PROCEDURES

Tank tests have been performed with models of
single and multiple-component mooring chains. The
multiple-component mooring chains used at the experi-
ments are of three kinds such as

The computational procedures of solving the
dynamic behavior of mooring lines are as follows:

1) Calculate the equilibrium form and tensions of
mooring line when the line is in a static equilib- 1) chain with 180¢ spherical spring buoy
rium. The mathematical formulation of static (of styrol form)
calculation by the lumped mass model is described

in Ref. 3 and Ref. 5. 2) chain with 226¢ spherical spring buoy
(of wood)
n+l n+l
2) The oscillation at the er end P
) o BEpAL A Pae s Gagd 3) chain with clump weight (of lead)
of the mooring line is assumed to start from rest
and gradulaly approach a sinusoidal motion in The principal particulars of the chain are shown
accordance with the following equations: in Table 1 while those of spring buoys and clump
weight are summerized in Table 2.
nt+l _ x0 + (1 -vt . +
*N+1 N+1 : e )'AP'Sln( Qe By ) Material Steel (without stud)
..... (27) | |Weight per Length
bl 0 -vt .
Zybl T Zner F (- eV eBpesin(ut + e, ) in water W, 0.1938 kg/m
_____ (28) in air WA 0.222 kg/m
where
Equivalent Diameter D¢ 0.599 cm

V,Ex, €5l chosen parameters Volume per Length 28.2 cm3/m

w : frequency of motion Modulus of elasticity 2.15 x 10% kg/cm?

t : time [ = (n+l)-At ]

Table 1 Principal Particulars of Chain
Ap, Bp: amplitude of motion in x and z
directions respectively.

Spring Buoy Clump Weight

3) Correct the weights of the lumped masses nearest |

to the bottom by the equations described in [ | (Bl buoy) (B2 buoy)

Appendix. Material | Styrol Form  Wood Lead
4) Calculate the matrix coefficients ﬁg+1, §g+1, Diameter 18.0 cm 22.6 cm 7.5 cm

§g+l 6?*1 Weight in air 0.07 kg 4.1 kg 2.0 kg

A s
Weight in water -3.0 kg -1.9 kg 1.823 kg

5) Calculate the drag forces acting on the line due or Buoyancy

to the tentative velocities ij, ij. Force B
6) Calculate tensions of the next time step T?+l by Table 2 Principal Particulars of Spring

iteration. In this step, the tensions of previous Buoys and Clump Weight

time step T" is used for the first approximation
of the tentitive values TB+l, Then, we determine
the corrections ATY'1 by the following equation
derived from Eq. (%0).

Forced oscillation tests of the mooring chains
described above were carried out in calm water. The
lower end of chain was attached rigidly to the bottom

= = = -
ATn+l1 _Fn+l cn+l | = _¢n+l of the model basin and the upper end attached to a
1 ] 2 2 2 mechanical oscillator was forced to oscillate
horizontally with amplitude A, = 5 cm (See Fig. 2).
+1 | ~n+ =n+l  =n+ P
AT; .E; 1 'Fg B Gg L . —wg+1 The driving mechanism of oscillating the chain is
= i shown in Photo. 1. It is essentially a crank-type
[ g : device with a drive rod.
o+l * axntl _=ntl n+l
=N L Evii Fyn [P . 20)
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The horizontal and vertical tensions are
measured by load cell (shown as Block Gauge) located
at the upper end as shown in Fig. 3 while the tension
at the anchored point is measured by a ring gauge.

COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL
RESULTS

At the numerical calculation of dynamic behavior
of a single mooring line, the total length of the
line was divided into 9 segments of equal length,
while the multi-component mooring lines were repre-
sented by 16 segments (See Fig. 4). The time incre-
ment At was equal to 0.02 seconds in both cases of
single and multi-component mooring lines.

The hydrodynamic coefficients of mooring line
such as added mass coefficients (Chn, Cht) and viscous
damping coefficients (Cgp, Cqt) used for the numerical
computation are obtained by experiments and are as
follows:

(added mass in
in

in

normal dir./ngﬂiyé) = 1.98
B
tangential dir./pDcme/4) = 0.2

Chn
Cht
Cdn

(added mass

(drag force normal dir./ é%p-Dc-E'u%) = 2.18

Cq¢ (drag force in tangential dir./ gﬁp-nc-ElutZ)

=0.17

Fig. 5 shows the time histories of vertical and
horizontal components of tension at the mooring
point P in the case where the point P was oscillated
harmonically in the horizontal direction. Comparing
the predicted time histories with those measured at
the experiments for various number of periods of
motion T, it is concluded that the predicted values
agree well with the measured ones quantitavily.
Therefore, it is considered that the present method
is useful for dynamic analysis of the mooring line.

The frequency response curves of tension are
plotted against the non-dimensional frequency in
Fig. 6. The amplitudes of horizontal and vertical
components of tension, Ty and Ty respectively, are
non-dimensionalized by dividing with Typ and Tyg
which denote the horizontal and vertical components
of tension at the static equilibrium state with null
displacement of the point P. It should be noted
that the tension increases with the frequency of
motion and becomes significant to cause failure at
higher frequency. Fig. 7 shows the difference of
the predicted amplitudes Ty and Ty at the point P
which are brought about by changing the coefficient
Cdn of hydrodynamic drag acting on the normal direc-
tion of the mooring line. It is evident that the
higher the damping coefficient is, the greater the
amplitudes of the dynamic tension are.

The comparisons between theoretical and experi-
mental results for the mooring chains with spring
buoy are also made and shown in Fig. 8. As shown
in Fig. 8, a spring buoy of which the weight in the
water is equal to - 3 kg (- means that the buoyant
force exceeds the gravity force) is attached to the
mooring line at the center of the line. The frequen-
cy response curves of the dynamic tension of the
mooring line with spring buoys are shown in Fig. 9.

Comparing the values of tension of the mooring chain
with a spring buoy with those of single mooring
chain, it is evident that the buoy is extremely
effective in decreasing the dynamic tension of chain.
The motions of the mooring chain and spring buoy are
plotted in Fig. 10.

Finally, the time-domain simulation of the
mooring chain with clump weight is executed and the
results are shown in Fig. 11. Again, good agreement
between theoretical and experimental results is
obtained. Both results show that impact load of
chain appears when the clump weight is lifted up from
the bottom of the water, while the drastic change of
tension occurs as the clump weight hit the bottom.

CONCLUDING REMARKS

Dynamic behaviors of the various multi-component
mooring lines are investigated theoretically and
experimentally, and in consequence, it is clarified
that the behaviors of the multi-component mooring
line are complicated and somewhat different from
those of the conventional single mooring line.

Other results obtained are as follows:

1) At higher frequencies, the dynamic tension is
significant and may be of magnitude suffi-
cient to cause a failure.

2) Spring buoy exhibits larger motions and

causes the '"wear and tear" problem between

buoy and mooring line while magnitude of
the dynamic tension of line is small.

3) Clump weight affects the line tension of

mooring line considerably. Especially, the

lift-up of the clump weight from the bottom
causes a remarkable increase of the dynamic
tension of the mooring line.

In conclusion, it is shown that the present
lumped mass method provides a realistic representation
of the dynamics of mooring line and is applicable to
numerical analysis of multi-component mooring lines
without tremendous computing time.

NOMENCLATURE

A cross-sectional area of mooring line

Anjs Atj added masses of j-th line segment in
normal and tangential directions
respectively

Arx, Arz @ projected Area of the additional con-
centrated substances in x and z
directions respectively

Ap, Bp amplitudes of motion in x and z direc-
tions respectively

cj current velocity at j-th lumped mass

Chns Cht : added mass coefficients of mooring line
in normal and tangential directions
respectively

Cdn»> Cqr : damping coefficients of mooring line in

normal and tangential directions
respectively
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Cdx, Cdz : damping coefficients of the additional
concentrated substances in x and 2z
directions respectively

De equivalent diameter of mooring line

E modulus of elasticity

Fxj» Fzj nodal components of external forces in
x and z directions respectively

faxj,fdzj: nodal components of drag forces in x and
z directions respectively

g gravity accerelation

L total length of mooring line

N original length of line segment

M5 mass of j-th lump (virtual mass of the
additional concentrated substances will
be included in Mj)

N number of line segment (number of lumped
masses is (n-1) )

T period of motion

Tj(T?+1) : line tension in segment between j-th and
(j+1)-th lumped mass

AT?+1 : correction of tentative tension Tg+1

TH, TV amplitudes of dynamic tension at the
mooring point P in horizontal and
vertical directions respectively

Tx, Tz line tensions at the mooring point P in
x and z directions respectively

THO, Tvo : pre-tensions at the mooring point P in
horizontal and vertical directions
respectively

t ¢ time [nrdt ] (=0 1,2 waves )

At time increment

unj, utj velocity components of j-th lumped mass
in normal and tangential directions
respectively

Wys Wa weights of mooring line per length in
water and in air respectively

We : weight of mooring line segment (= Wy-2)

X4, 2j (x?+l, z?+1) displacements of j-th lumped

mass in x and z directions
respectively

8 weight of j-th lumped mass in water
density of water

w frequency of motion
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APPENDIX

The correction of the weight of line segment is
necessary to prevent unrealistic impact load of line
from being caused by a drastic change of weight in
case where a lumped mass nearest to the bottom hit
the bottom or is lifted up from the bottom. In order
to prevent the unrealistic impact, a part of the
mooring line close to the bottom is approximated by
a parabola and the weight of a fraction of the
parabola which locates below the bottom surface is
neglected (See Fig. 1).

According to this approximation, the weights
of the lumped mass nearest to the bottom, that is
to say 67 and that of the next lumped mass, &I+1
are corrected in the following manner:

(1) 0 2 A21-1 < 21I-1
8T = 1.5 We (1. - Ae1-1/21-1)

6141 = We (1. + 0.5 AlI_l/EI_l)
where

A%T-1 = - aI-l/bI-l

XI4+1°21 ~ *1°%141
Xpxp4y (X7 = Xp47)

a1-1 =

2« 2
X1°2141 T *141°%1
xpoxpy1 (X1 - Xp47)

br-1 =
271 = £ (1. + Ty_1/AE)

(2) 82121 <O

§1 = 1.5 We and S141 = We
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Photo 1 — Apparatus of mechanical forced oscillator
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M

1D No. Tension(Kg)

2.5391082
2.6445727
2.8712229
3.1363702

© ~ s~

A) CONVENTIONAL SINGLE MOORING LINE

z

X
Angle(deg.) x(M) z(M)
0.8971394 0.0000000 0.0000000
16.2596529 3.0021154 0.3605167
27.8441336 5.8431810 1.4093504
35.9558410 7.6015360 2.4063136
17.9"(81) i
M = |
{17.77 (B2)} P

A
1D No. Tension(Kg) Angle(deg.) x(M) z(M)
1 4.5956123 5.8201618 0.0000000 0.0000000
5 4.8088027 18.0585451 4.5066253 0.8768454
9 4.6109334 -7.4583730 8.7731644 2.5821370
13 4.5825744 3.9073754 13.3589091 2.3251757
16 4.7045563 13.6373945 16.7824205 2.7288570
B) MOORING LINE WITH SPRING BUOY (BT1)
z
17.56M —l
-

A 2 3 4 5 6

10 No. Tension(Kg)
1 9.3994392
5 9.3994392
9 9.7451230
13 10.0189763
16 10.3166257

Angle(deg.)
0.0000000
0.0000000

15.3064917

20.2545844

24.3427090

x(M)
0.0000000
4.5250015
9.0491267

13.3708716
16.5293184

C) MOORING LINE WITH CLUMP WEIGHT

Fig. 4 — Static configurations of single and multi-component mooring lines

(M)
0.0000000
0.0000000
0.0569110
1.3933476
2.6337060
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Fig. 9 — Frequency response curves of dynamic tensions (mooring chains with B1 and

B2 spring buoys)
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Fig. 11 — Time histories of dynamic tensions obtained by computer simulation (mooring
chain with clump weight)



